CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CHEMISTRY 5070/02

Paper 2 Theory

May/June 2003

1 hour 30 minutes

Candidates answer on the Question Paper. Additional Materials: Answer Paper

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number in the spaces at the top of this page and on any separate answer paper used.

Sections A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any three questions.

Write your answers on the separate answer paper.

At the end of the examination, fasten any separate answer paper used securely to the question paper.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use		
Section A		
В8		
В9		
B10		
B11		
TOTAL		

This document consists of **14** printed pages and **2** blank pages.

Section A

Answer **all** the questions in this section in the spaces provided.

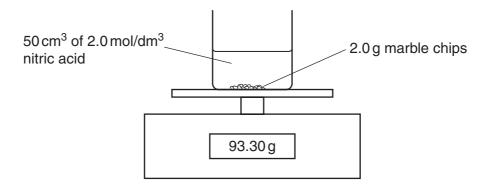
A 1	Choose from the following elements to answer the questions below.					
		argon	bromine	carbon	hydrogen	
		iodine	iron	neon	sulphur	
	Eac	h element can	be use used once	, more than onc	ee, or not at all.	
	Nan	ne an element	which			
	(a)	forms a basic	oxide,			
	(b)	is a liquid at ro	oom temperature a	and pressure,		
					[1]	
	(c)	reacts with aq	ueous copper(II) s	sulphate to give	a pink solid,	
					[1]	
	(d)	is formed during	ng the electrolysis	of concentrated	d aqueous sodium chloride,	
					[1]	
	(e)	has a giant mo	olecular structure.			
					[1]	

A2		Ethanol, $\mathrm{CH_3CH_2OH}$, is a liquid fuel. Ethanol can be manufactured either from glucose, $\mathrm{C_6H_{12}O_6}$, or from ethene.			
	(a)	Briefly describe the manufacture of ethanol from glucose. Include the balanced equation in your answer.			
(b) (i) Draw the displayed formula for ethene.					
	(~)	(-)			
		(ii)	Name the substance that reacts with ethene to make ethanol.		
	((iii)	Give the conditions needed for this reaction.		
			[4]		

А3	Petr	oleu	m is a complex mixture of I	hydrocarbons. Petroleum is a source of many useful fuels.
	(a)	Wha	at is meant by the term <i>hyd</i>	drocarbon?
				[1]
	(b)	Peti	roleum is separated by frac	ctional distillation.
		(i)	Complete the following ta	ble about the fractions obtained from petroleum.
			fraction	use
			petrol (gasoline)	fuel for cars
			paraffin (kerosene)	
			diesel	fuel for diesel engines
			bitumen	
		(ii)	Name one other fraction	obtained from petroleum. [3]
	(c)	Frac	ctional distillation of petro	bleum does not produce sufficient of some fractions to
	(-)	mat Cra	ch demand. cking is used to convert la	arge hydrocarbon molecules into smaller molecules that
			more in demand.	
			ydrocarbon of molecular fo	12 20
		(i)	Suggest the formula of or	ne alkane that may be produced.
		410		
		(ii)	Suggest the formula of or	ne alkene that may be produced.
		/		
		(iii)	alkane.	that can be used to distinguish between an alkene and an
			chemical test	
			result with alkane	
			result with alkene	

A4 Carbon dioxide is a greenhouse gas. Carbon dioxide is given a greenhouse factor of 1. Other gases are given a greenhouse factor that compares their effect with carbon dioxide. The greenhouse effect increases as the factor value increases. The table gives some information about four different gases.

gas	greenhouse factor	percentage of gas in the atmosphere
CO ₂	1	0.036
CH ₄	30	0.0017
N ₂ O	160	3.0 × 10 ⁻⁴
CC <i>l</i> ₃ F	21000	2.8 × 10 ⁻⁸


(a)	State one possible consequence of an increased greenhouse effect.
	[1]
(b)	Give one source of methane.
	[1]
(c)	Why is an increase in the percentage of methane more worrying than the same percentage increase of carbon dioxide?
	[1]
(d)	What other environmental problem, beside its action as a greenhouse gas, is caused by ${\rm CC}\it l_3{\rm F}\it ?$
	[4]

A5 Marble statues are being damaged by acid rain. The chemical name for marble is calcium carbonate.

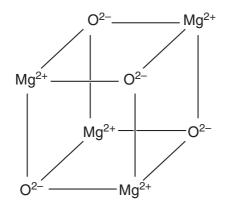
A student investigated the reaction between marble chips and nitric acid.

$$\mathrm{CaCO_3(s)} \ + \ 2\mathrm{HNO_3(aq)} \ \longrightarrow \ \mathrm{Ca(NO_3)_2(aq)} \ + \ \mathrm{H_2O(l)} \ + \ \mathrm{CO_2(g)}$$

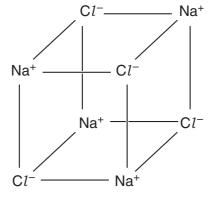
The diagram shows the apparatus the student used.

The student recorded the balance reading every minute.

The table shows the results.


time/minutes	balance reading/g
0	93.30
1	93.28
2	93.26
3	93.24
4	93.22
5	93.21
6	93.20
7	93.19
8	93.18
9	93.17
10	93.16
11	93.15
12	93.15
13	93.14
14	93.14

a)	Explain why the balance reading decreases during the experiment.
	[1]
b)	How can the student tell when the reaction has finished?
	[1]


(c)	(i)	Calculate the number of moles of nitric acid in 50 cm ³ of 2.0 mol/dm ³ solution.
	(ii)	Calculate the number of moles of calcium carbonate in 2.0 g.
	(iii)	Which reagent, calcium carbonate or nitric acid, is in excess? Explain your answer.
		[5]
(d)	nitri	student repeats the experiment using the same quantities of calcium carbonate and c acid. This time the acid is at a higher temperature. Describe and explain, in terms
		ollisions between reacting particles, the effect of increasing the temperature on the of reaction.
		[2]

A6	6 A student adds aqueous sodium hydroxide from a burette into 25.0 cm ³ of dilute sulphur acid. The student measures the pH value of the mixture during the addition of the sodiu hydroxide.			
	(a)	Des	cribe how the pH value changes.	
			[1]	
	(b)		e an ionic equation to represent the neutralisation reaction between sodium roxide and sulphuric acid.	
			[1]	
	(c)	Sulp	phuric acid is a strong acid.	
		(i)	What is meant by the term acid?	
		(ii)	What is the difference between a strong acid and a weak acid?	
			[3]	
	(d)		te sulphuric acid reacts with magnesium to give hydrogen. e the ionic equation for this reaction.	
			[1]	

A7 The structures of two ionic lattices are shown below.

magnesium oxide

sodium chloride

(a)	Explain wh	y these tw	o solids o	do not	conduct	electricity.
-----	------------	------------	------------	--------	---------	--------------

 	[1]

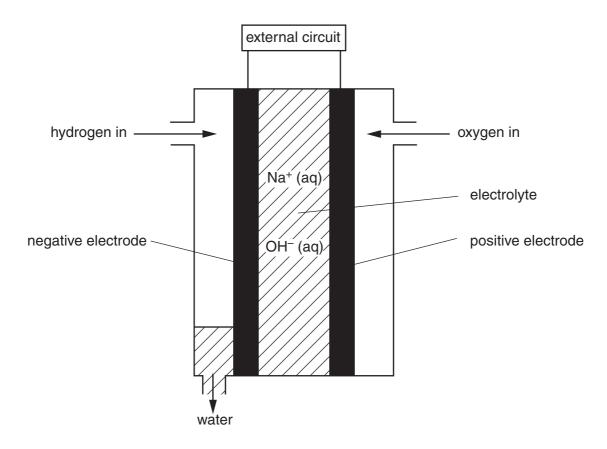
(b)	(i)	Explain why	magnesium	oxide has a	very high	melting point.
-----	-----	-------------	-----------	-------------	-----------	----------------

(ii) Suggest why the melting point of magnesium oxide is much higher than that of sodium chloride.

5070/02/M/J/03

[2]

(c) Draw the electronic structure of a magnesium ion and of an oxide ion.


magnesium ion

oxide ion

Section B

Answer three questions from this section.

B8 The NASA space shuttle uses fuel cells to generate electricity. The diagram below shows a hydrogen-oxygen fuel cell.

At the positive electrode, oxygen reacts with water as shown.

$$O_2(g) + 2H_2O(I) + 4e^- \rightarrow 4OH^-(aq)$$

At the negative electrode, hydrogen reacts with hydroxide ions as shown.

$$H_2(g) + 2OH^-(aq) \rightarrow 2H_2O(l) + 2e^-$$

The overall reaction in the fuel cell is the reaction between hydrogen and oxygen to make water.

- (a) Give one source for hydrogen and one source for oxygen for use in a fuel cell. [2]
- **(b)** What is the name of the electrolyte used in the fuel cell? [1]
- (c) What type of reaction takes place, reduction or oxidation, at the positive electrode? Explain your answer. [1]
- (d) A fuel cell uses 240 dm³ of hydrogen. Calculate the volume of oxygen needed, and the mass of water formed. All gas volumes measured at room temperature and pressure. [3]
- (e) Describe some advantages and disadvantages of using a fuel cell to generate electricity. [3]

B9 The table gives information about the first five members of the homologous series of carboxylic acids.

name of acid	formula	relative molecular mass	melting point/°C	boiling point/°C
methanoic acid	HCO ₂ H	46	8.4	101
ethanoic acid	CH ₃ CO ₂ H	60	17	118
propanoic acid	C ₂ H ₅ CO ₂ H	74	-22	141
butanoic acid	C ₃ H ₇ CO ₂ H	88	-8	164
pentanoic acid				

(a) (i) Predict the formula and the relative molecular mass for pentanoic acid.

Explain why it is easier to predict the boiling point of pentanoic acid than the melting point.

[3]

(b) Draw the displayed formula for propanoic acid.

[1]

(c) Analysis of an organic acid isolated from red ants shows that it contains 0.060 g of carbon, 0.010 g of hydrogen and 0.16 g of oxygen. Calculate the empirical formula for this acid.

[2]

(d) Ethanoic acid reacts with magnesium oxide. Name the products formed and write a balanced equation for the reaction. [2]

(e) Describe how ethanoic acid can be converted into ethyl ethanoate. [2]

> [Turn over 5070/02/M/J/03

B10 Methane, CH₄, is used as a fuel. The complete combustion of methane can be represented by the equation below.

H—C—H + 20=0
$$\rightarrow$$
 0=C=0 + 2 O
H
$$\Delta H = -890 \text{ kJ/mol}$$

- (a) Explain why this reaction is exothermic in terms of the energy changes that take place during bond breaking and bond making. [3]
- (b) Calculate the energy released when 4.0 g of methane is completely combusted. [2]
- (c) Draw the energy profile diagram for the complete combustion of methane.

 Label on the diagram the activation energy and the enthalpy change.

 [3]
- (d) Draw a 'dot and cross' diagram to show the bonding in methane.
 You only need to draw the outer (valence) electrons of carbon. [2]

B11 Coal-burning power stations produce sulphur dioxide and oxides of nitrogen. These two gases cause acid rain.

- (a) Nitric oxide, NO, is made in a power station when nitrogen and oxygen react together.

 Write the equation for this reaction.

 [1]
- **(b)** Many coal burning power stations are now fitted with a flue gas desulphurisation plant which removes sulphur dioxide and nitrogen dioxide from the gaseous emissions.

In a flue gas desulphurisation plant, powdered calcium carbonate reacts with sulphur dioxide as shown.

$$SO_2(g) + CaCO_3(s) \rightarrow CaSO_3(s) + CO_2(g)$$

- (i) Suggest why the calcium carbonate is powdered.
- (ii) Calculate the mass of calcium carbonate needed to react with 8000 kg of sulphur dioxide.

[1]

- (iii) Nitrogen dioxide also reacts with calcium carbonate. Suggest the name of the solid product of this reaction. [1]
- (c) In the air sulphur dioxide reacts with nitrogen dioxide forming sulphur trioxide. The reactions that take place are shown in the equations.

$$\mathrm{SO_2}$$
 + $\mathrm{NO_2} \rightarrow \mathrm{SO_3}$ + NO 2NO + $\mathrm{O_2} \rightarrow \mathrm{2NO_2}$

Suggest the role of nitrogen dioxide in these reactions. Explain your answer. [2]

(d) Sulphur dioxide is used in the Contact process to make sulphuric acid.

Describe the conditions and name the catalyst in the Contact process. [2]

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

																_									
		0	Heijin	2	20	Se	Neon 10	40	Ar	Argon 18	84	궃	Krypton 36	131	Xe	Xenon 54		絽	Radon 86				175	Γn	Lutetium 71
		=			19	ш	Fluorine 9	35.5	70	Chlorine 17	80		m			lodine 53		Αt	Astatine 85				173	Υb	Ytterbium 70
		>					Oxygen 8	32		=		Se	Selenium 34			Tellurium 52		Ъ					169	T	Thulium 69
		>			41	z	Nitrogen 7	31	۵	Phosphorus 15		As	Arsenic 33	122	Sp	Antimony 51	509	<u>B</u>	Bismuth 83				167	ш	Erbium 68
		2			12	ပ	Carbon 6	28	S	Silicon 14	73	Ge	Ε		Sn	Tin 50	207						165	운	Holmium 67
		=			F	മ	Boron 5	27	Αſ	Aluminium 13	02	Ğa	Gallium 31	115	٦	Indium 49	204	11	Thallium 81				162	٥	Dysprosium 66
SII												Zn	Zinc 30	112	ප	Cadmium 48	201	Нg	Mercury 80				159	Д	Terbium 65
I he Periodic I able of the Elements											64	D C	Copper 29	108	Ag	Silver 47	197	Αu	Gold 79				157	<u>B</u>	Gadolinium 64
le or the	Group										29	Z	Nickel 28	106	Pd	Palladium 46	195	풉	Platinum 78				152	Ш	Europium 63
odic I ab	g				1						59	ပိ	Cobalt 27	103	絽	Rhodium 45	192	<u> </u>	Iridium 77				150	Sm	Samarium 62
ne Perio			- T	1							56	Бe	Iron 26	101		E	190	SO	Osmium 76					Pm	Promethium 61
											55	Mn	Manganese 25		ည	Technetium 43	186		Rhenium 75				144	Š	Neodymium 60
											52	ဝံ	Chromium 24	96	Mo	Molybdenum 42	184		Tungsten 74				141	ቯ	Praseodymium 59
											51	>	Vanadium 23	93	QN	Niobium 41	181	<u>a</u>	Tantalum 73				140	S	Cerium 58
											48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72						
											45	လွ	_			Yttrium 39	139	Ľ	Lanthanum 57 *	227	Ac	Actinium 89 †		מסוומט	001100
		=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226	Ва	Radium 88	* 50 71 024500000	30=7 1 California Selle +00 102 Actinoid Sorion	ביים ביים ביים ביים ביים ביים ביים ביים
		_			7	=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19		Rb	Rubidium 37	133	Cs	Caesium 55	ı	Ť	Francium 87	*50 71 .	100 405 400 405	5
													5070/0	2/M/											

144		150	152	157		162	165	167			
PZ	Pm		Eu	Вd		ò	웃	ш			
raseodymium Neodymium	Promethium		Europium	Gadolinium		Dysprosium	Holminm	Erbium			
09	61		63	64	65	99	29	89			-
238											
-	ď	Pu	Am	Cm	æ	ర	Es	Æ	Md		
rotactinium Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101		
	Neodymium 238 Uranium	Nd Neodymium 238 U		Nd Pm Sm Neodymlum Promethium Samarium 238 61 62 U Np Pu Uranium Neptunium Putonium 2 93 94	Nd Pm Samartum Europium 0 61 62 63 238 Weptunium Putonium Am Uranium Neptunium Putonium Americium 2 93 94 95	Nd Pm Sm erium Europium Gadoinium 0 61 62 63 64 238 W Np Np Np Np Cm Uranium Neptunium Putonium Americium Curium 2 93 94 95 96	Nd Pm Smartium Europium Gadolinium Gadolinium Tierbium Dysprosium 238 1 Np Np Np Americium Curium Berkelium Calibrium 24 338 Cm Bk Cf Cf Uranium Neptunium Americium Americium Berkelium Calibrium 25 33 34 35 36 37 38	Nd Pm Smartium Europium Gadolinium Gadolinium Tierbium Dysprosium 238 1 Np Np Np Americium Curium Berkelium Calibrium 24 338 Cm Bk Cf Cf Uranium Neptunium Americium Americium Berkelium Calibrium 25 33 34 35 36 37 38	Nd Pm Smartium Europium Gadolinium Gadolinium Terbium Dysprosium Homium 10 Np Pu Americium Americium Curium Berkelium Californium Ensteinium 1 Neptunium Americium Americium Curium Berkelium Californium Ensteinium	Nd Pm Smartium Europium Gadolinium Gadolinium Tierbium Dysprosium Homium Erbium 238 V Np Np Americum Americum Curium Berkelium Californium Erbitum 1 molumium Neptumium Americum Americum Curium Berkelium Californium Ermitum 2 molumium Americum Americum Americum Americum Americum Berkelium Californium Ermitum	Nd Pm Smartium Europium Gadolinium Gadolinium Terbium Dysprosium Homium 10 Np Pu Americium Americium Curium Berkelium Californium Ensteinium 1 Neptunium Americium Americium Curium Berkelium Californium Ensteinium

т В

Key

q

Lr Lawrendium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).